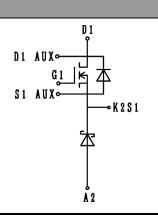
Target Specification


MSL800FS33PL

3300V SiC MOSFET and Schottky Barrier Diode

FEATURES

- * Ultra low switching loss with SiC MOSFET
- \ast Ultra low recovery loss with SiC diode.
- * High current density package
- * Low stray inductance & low Rth(j-c)
- * Scalable large current easily handled by paralleling

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Item			Symbol	Unit	MSL800FS33PLT		
Drain Source Voltage			V _{DSS}	V	3,300		
Gate Source Voltage		V _{GSS}	V	+20/-15			
MOSFET Drain Current		DC	ID	А	800		
	nem	1ms	I _{DM}	A	1,600		
MOSEET Source Surrout		DC	ls	^	800		
MOSFET Source C	OSFET Source Current		I _{SM}	A	1,600		
Channer Diada Fai	hopper Diode Forward Current		IF	^	800		
Chopper Diode For			I _{FM}	A	1,600		
Junction Temperat	ure	÷	T _{vj op}	°C	-50 ~ +150		
Storage Temperature			T _{stg}	°C	-55 ~ +150		
Isolation Voltage		Viso	VRMS	6,000(AC 1 minute)			
Isolation Voltage Screw Torque	Terminals (M3/M8)		М	N∙m	0.8 / 15		
	Mounting (M6)		М		6.0 (1)		

Notes: (1) Recommended Value 5.5±0.5N·m

1) MOSFET ELECTRICAL CHARACTERISTICS

Item		Symbol	Unit	Min.	Тур.	Max.	Test Conditions	
Drain Source Cut-Off Current		1	mA	-	-	0.05	V _{DS} =3,300V, V _{GS} =0V, Tvj=25°C	
		DSS		-	-	1	V _{DS} =3,300V, V _{GS} =0V, Tvj=150°C	
Gate Source Leakage Current		lgss	nA	-	-	100	V _{GS} =20V, V _{DS} =0V, Tvj=25°C	
		1655		-100	-	-	V _{GS} = -15V, V _{DS} =0V, Tvj=25°C	
Drain Source on-	Drain Source on-state Voltage		V	-	2.3	-	I _D =800A, V _{GS} =15V, Tvj=25°C	
Drain Source on-				TBD	3.6	TBD	I _D =800A, V _{GS} =15V, Tvj=150°C	
Gate Source Thr	eshold Voltage	VGS(Th)	V	TBD	3.0	TBD	V _{DS} =10V, I _D =800mA, Tvj=25°C	
Input Capacitanc	Input Capacitance		nF	-	230	-	V _{DS} =10V, V _{GS} =0V, f=100kHz, Tvj=25°C	
Internal Gate Res	sistance	Rg(int)	Ω	-	2.2	-	VDS = 10V, VGS = 0V, 1 = 100KHZ, TVJ = 25 C	
				-	1.7	-	Is=800A, V _{GS} = 15V, Tvj=25°C	
		Vsd	V	TBD	3.3	TBD	Is=800A, V _{GS} = 15V, Tvj=150°C	
Source	Source Drain Voltage			-	8.2	-	I _S =800A, V _{GS} = -10V, Tvj=25°C	
				TBD	6.7	TBD	Is=800A, V _{GS} = -10V, Tvj=150°C	
	Rise Time	tr		-	0.5	-		
SwitchingTimos	Turn On Delay Time	t _d (on)	μS	-	1.0	-		
SwitchingTimes	Fall Time	tf		-	0.2	-	V _{DD} =1,800V, I _D =800A Ls=105nH, R _{G(ON/OFF)} =1/1.5Ω (2) V _{GS} =+15V/-10V, Tvj=150°C	
	Turn Off Delay Time	t _d (off)		-	1.5	-		
Turn-on Loss per	Turn-on Loss per Pulse		J/P	-	0.58	-	VGS=+15V/-10V, 1Vj=150°C	
Turn-off Loss per Pulse		Eoff	J/F	-	0.37	-		
Reverse Recovery Time		trr	μS	-	0.3	-	V _{DD} =1,800V, I _S =800A, Ls=150nH,	
Reverse Recovery Loss per Pulse		Err	J/P	-	0.06	-	Tvj=150°C, VGS=-10V (3)	
Stray Inductance Module		LSCE	nH	-	10	-	Between K1(main) and S2(main)	
Thermal Impedance MOSFET		Rth(j-c)	K/W	-	-	0.025	Junction to case	
Contact Thermal Impedance		Rth(c-f)	K/W	-	0.02	-	Case to fin(at MOS part)	

MSL800FS33PLT

Target Specification

2) Chopper DIODE

Item	Symbol	Unit	Min.	Тур.	Max.	Test Conditions
Repetitive Reverse Current	IRRM	mA	-	-	0.05	VR=3,300V, Tvj=25°C
Repetitive Reverse Current	IKKM		-	-	54	VR=3,300V, Tvj=150°C
		V	-	2.8		IF=800A, Tvj=25°C
Peak Forward Voltage Drop	Vfm					Measured at main terminal
(Between main terminals)	VEIVI		TBD	4.9	TBD	IF=800A, Tvj=150°C
						Measured at main terminal
Reverse Recovery Time	trr	μS		0.15		V _{DD} =1,800V, I _F =800A, Ls=105nH,
Reverse Recovery Loss per Pulse	Err	J/P		0.002		Tvj=150°C, Counter arm;
						V _{GS} =+15/-10V,R _{G(ON/OFF)} =1Ω/1.5Ω
Thermal Impedance	Rth(j-c)	K/W			0.025	Junction to case
Contact Thermal Impedance	Rth(c-f)	K/W	-	0.02	-	Case to fin (at Chopper Diode part)

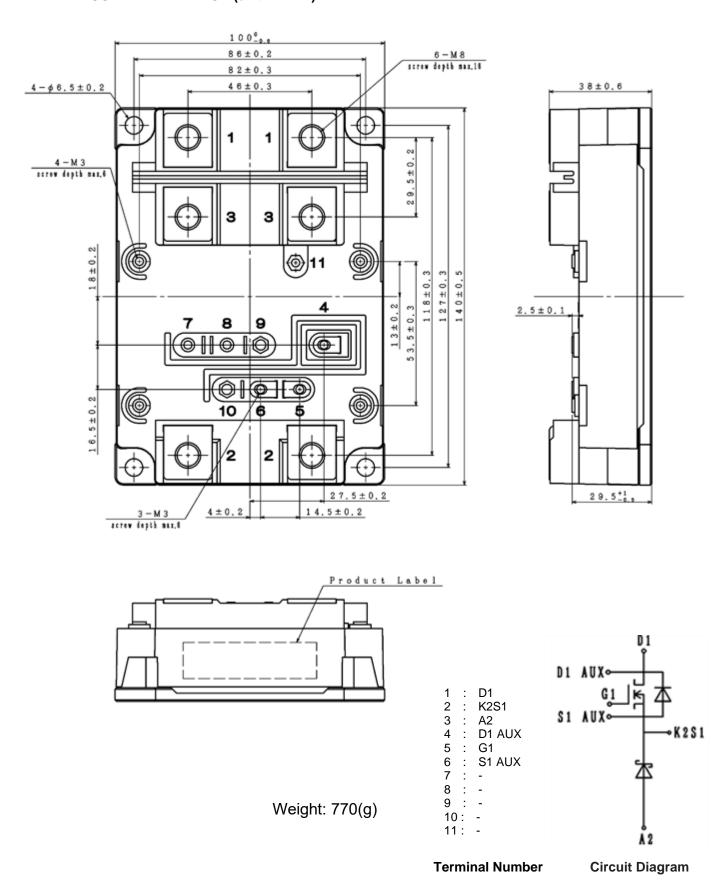
Notes: (2) R_G value is a test condition value for evaluation, not recommended value.

Please determine the suitable R_G value by measuring switching behavior and checking results with the respective SOA. (3) Counter arm; MBN1500E33E2 V_{GE} =+/-15V

* Please contact our representatives at order. * For improvement, specifications are subject to change without notice.

* For actual application, please confirm this spec sheet is the newest revision.

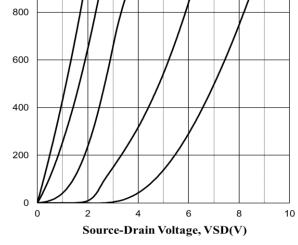
* ELECTRICAL CHARACTERISTIC items shown in above table are according to IEC 60747-2 and IEC 60747-9.

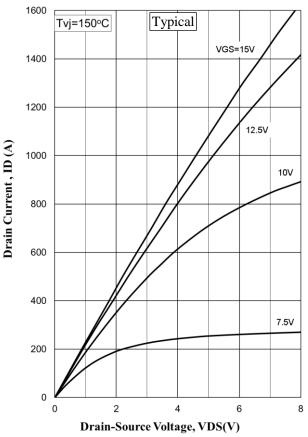


Target Specification

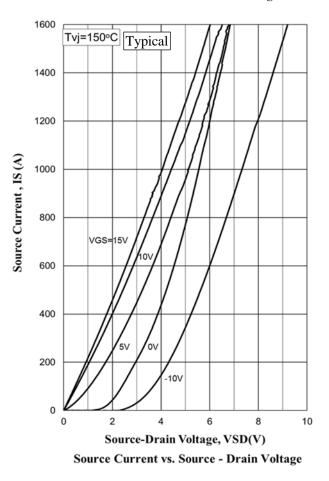
OUTLINE DRAWING (unit in mm)

8

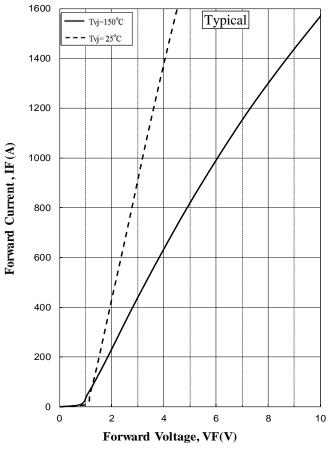

00FS33P


Target Specification

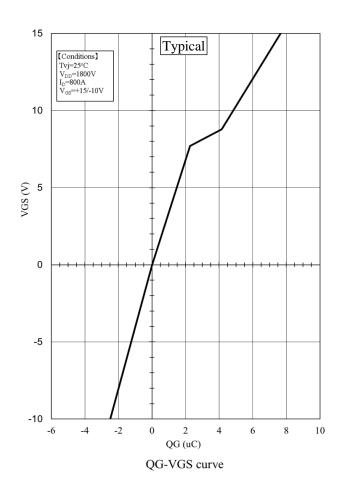
MSL800FS33PLT


1600 Typical Tvj=25°C VGS=15V 1400 1200 12.5V Drain Current, ID (A) 1000 800 600 400 10V 200 7.5V 0 0 2 4 6 8 Drain-Source Voltage, VDS(V) Drain Current vs. Drain - Source Voltage VGS=15V 10V 5V 0V 1600 Typical Tvj=25°C 1400 -10V 1200 Source Current, IS (A) 1000 800

Source Current vs.Source - Drain Voltage

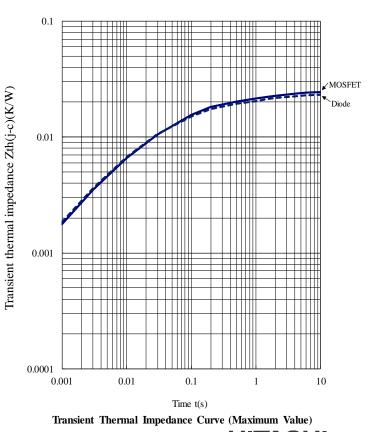


Drain Current vs. Drain - Source Voltage

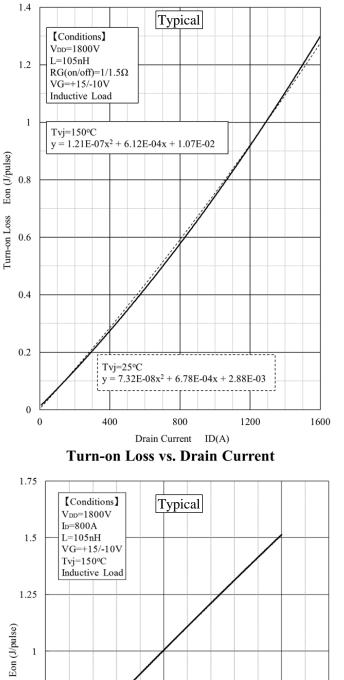


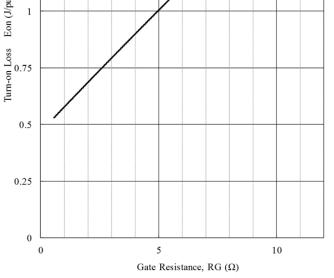
Target Specification

MSL800FS33PLT

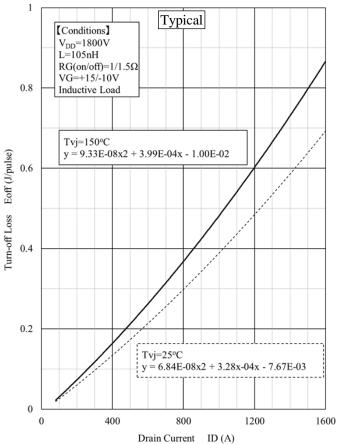


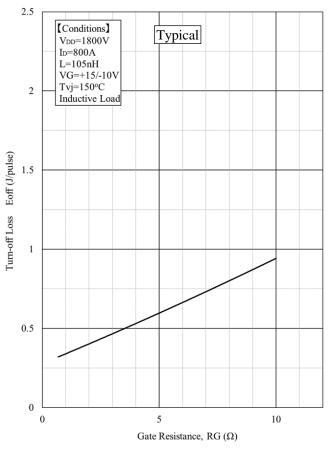
Forward Voltage of Chopper diode




Curve approximation model

$\Sigma Zth[n]*(1-exp(-t/\tau th[n]))$									
n	1	2	3	4	Unit				
τth[n]	1.79E+00	9.81E-02	1.16E-02	8.72E-04	sec				
Zth[n,MOSFET]	5.52E-03	1.10E-02	6.41E-03	1.77E-03	K/W				
Zth[n,Diode]	5.07E-03	9.84E-03	6.73E-03	1.88E-03	K/W				


MSL800FS33PLT Targe



Target Specification

Turn-off Loss vs. Drain Current

Turn-off Loss vs.Gate Resistance

MSL800FS33PLT

Target Specification

HITACHI POWER SEMICONDUCTORS

Notices |

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.
- 2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
- 3. In cases where extremely high reliability is required(such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.
- 5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi Power Semiconductor Device, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi Power Semiconductor Device, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
- For inquiries relating to the products, please contact nearest overseas representatives which is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi-power-semiconductor-device.co.jp/en/

