
MSL800FS33NLT

Target Specification

3300V SiC MOSFET and Schottky Barrier Diode

FEATURES

- * Ultra low switching loss with SiC MOSFET
- * Ultra low recovery loss with SiC diode.
- * High current density package
- * Low stray inductance & low Rth(j-c)
- * Built in temperature sensor
- * Scalable large current easily handled by paralleling

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Item			Symbol	Unit	MSL800FS33NLT
Drain Source Voltage			V_{DSS}	V	3,300
Gate Source Voltage			V_{GSS}	V	+20/-15
MOSFET Drain Curre	urrant	DC	I _D	۸	800
MOSFET DIAIN C	urrent	1ms	I _{DM}	A	1,600
MOSFET Source Current		DC	Is	А	800
		1ms	Ism	A	1,600
Chopper Diode Forward Current		DC	I _F	۸	800
		1ms	I _{FM}	Α	1,600
Junction Tempera	Junction Temperature			°C	-50 ~ +150
Storage Temperature			T _{vj op} T _{stg}	°C	-55 ~ +150
Isolation Voltage			V _{ISO}	V_{RMS}	6,000(AC 1 minute)
Screw Torque	Terminals (M3/M8)		M	Nm	0.8 / 15
	Mounting (M6)		M	N∙m	6.0 (1)

Notes: (1) Recommended Value 5.5±0.5N⋅m

1) MOSFET ELECTRICAL CHARACTERISTICS

I) MOSI ET ELECTRICAE CHARACTERISTICS								
Item			Symbol	Unit	Min.	Тур.	Max.	Test Conditions
Drain Source Cut-Off Current		IDSS	mA	-	-	0.05	V _{DS} =3,300V, V _{GS} =0V, Tvj=25°C	
				-	-	1	V _{DS} =3,300V, V _{GS} =0V, Tvj=150°C	
Gate Source Leakage Current		I _{GSS}	nA	-	-	100	V _{GS} =20V, V _{DS} =0V, Tvj=25°C	
		IGSS		-100	-	-	V _{GS} = -15V, V _{DS} =0V, Tvj=25°C	
Drain Source on-	state Vo	ltane	V _{DS(ON)}	V	-	2.3	-	I _D =800A, V _{GS} =15V, Tvj=25°C
Drain Source on-state Voltage		` ,	V	TBD	3.6	TBD	I _D =800A, V _{GS} =15V, Tvj=150°C	
Gate Source Three	eshold V	oltage	V _{GS(Th)}	٧	TBD	3.0	TBD	V _{DS} =10V, I _D =800mA, Tvj=25°C
Input Capacitance		Ciss	nF	-	230	-	V _{DS} =10V, V _{GS} =0V, f=100kHz, Tvj=25°C	
Internal Gate Resistance		Rg(int)	Ω	-	2.2	-	VDS=10V, VGS=0V, 1=100K112, 1VJ=23 C	
						1.7		Is=800A, V _{GS} = 15V, Tvj=25°C
Source Drain Vol-	tage		Vsp	V	TBD	3.3	TBD	Is=800A, V _{GS} = 15V, Tvj=150°C
Source Drain Voltage		V 5D	V		8.2		I _S =800A, V _{GS} = -10V, Tvj=25°C	
					TBD	6.7	TBD	Is=800A, V _{GS} = -10V, Tvj=150°C
	Rise Tir	Rise Time		μS	-	0.5	-	
SwitchingTimes	Turn On Delay Time		t _d (on)		-	1.0	-	\/1 900\/ I900A
Switching rimes	Fall Time		t f		-	0.2	-	V _{DD} =1,800V, I _D =800A Ls=105nH, R _{G(ON/OFF)} =1/1.5Ω (2)
		Turn Off Delay Time			-	1.5	-	V _{GS} =+15V/-10V, Tvj=150°C
Turn-on Loss per	Pulse		Eon	J/P	-	0.58	-	V65=110 V/ 10 V, 1 VJ=100 O
Turn-off Loss per	Pulse		E _{off}		-	0.37	-	
Stray Inductance	Module		LSCE	nΗ	-	10	-	Between K1(main) and S2(main)
Reverse Recovery Time		t _{rr}	us		0.3		V _{DD} =1,800V, I _S =800A, Ls=150nH,	
Reverse Recovery Loss per Pulse		Err	J/P		0.06		Tvj=150°C,V _{GS} =-10V (3)	
NITO The americate in		Resistance		kΩ	-	5	-	To-25 0C
NTC-Thermistor		Deviation	ΔR/R	%	-5	-	5	Tc=25 °C
Thermal Impedar	Thermal Impedance MOSFET		Rth(j-c)	K/W	-	-	0.025	Junction to case
Contact Thermal Impedance		Rth(c-f)	K/W	-	0.02	-	Case to fin(at MOS part)	

Sic Module Spec.No.IGBT-SP-19013 R1 P2

MSL800FS33NLT

Target Specification

2) Chopper DIODE

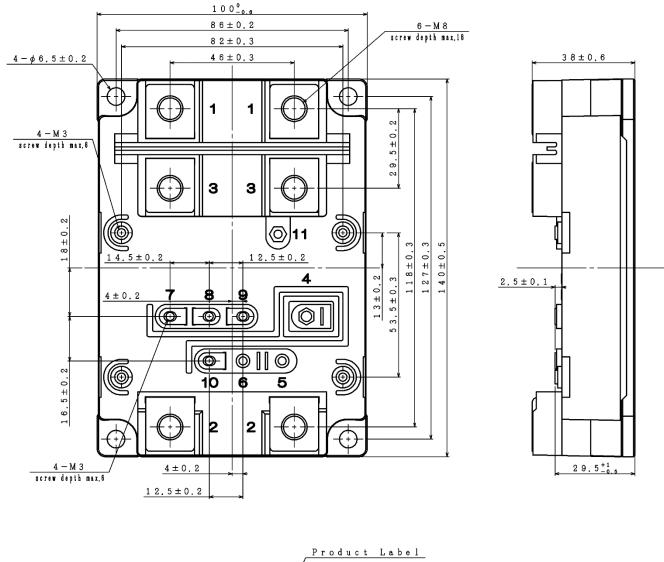
Item	Symbol	Unit	Min.	Тур.	Max.	Test Conditions
Ponetitive Powerse Current	IRRM	mA	-	-	0.05	VR=3,300V, Tvj=25°C
Repetitive Reverse Current	IKKW		-	-	54	VR=3,300V, Tvj=150°C
		V	-	2.8		IF=800A, Tvj=25°C
Peak Forward Voltage Drop	VFM					Measured at main terminal
(Between main terminals)	V FIVI		TBD	4.9	TBD	IF=800A, Tvj=150°C
						Measured at main terminal
Reverse Recovery Time	trr	μS		0.15		V _{DD} =1,800V, I _F =800A, Ls=105nH,
Reverse Recovery Loss per Pulse	Err	J/P		0.002		Tvj=150°C, Counter arm;
Neverse Necovery Loss per ruise						$V_{GS}=+15/-10V$, $R_{G(ON/OFF)}=1\Omega/1.5\Omega$
Thermal Impedance	Rth(j-c)	K/W			0.025	Junction to case
Contact Thermal Impedance	Rth(c-f)	K/W	-	0.02	-	Case to fin (at Chopper Diode part)

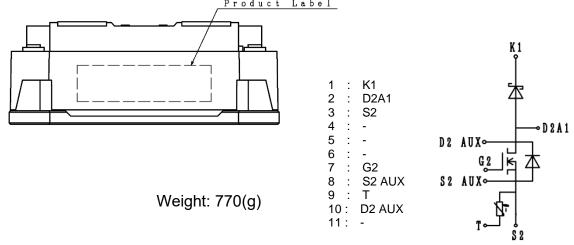
Notes: (2) R_G value is a test condition value for evaluation, not recommended value.

Please determine the suitable R_{G} value by measuring switching behavior and checking results with the respective SOA.

(3) Counter arm; MBN1500E33E2 V_{GE}=+/-15V

^{*} Please contact our representatives at order. * For improvement, specifications are subject to change without notice.


^{*} For actual application, please confirm this spec sheet is the newest revision.


^{*} ELECTRICAL CHARACTERISTIC items shown in above table are according to IEC 60747–2 and IEC 60747–9.

MSL800FS33NLT

Target Specification

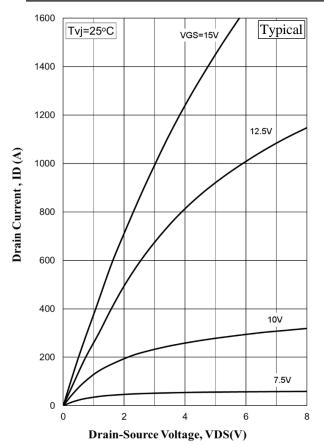
OUTLINE DRAWING (unit in mm)

Terminal Number

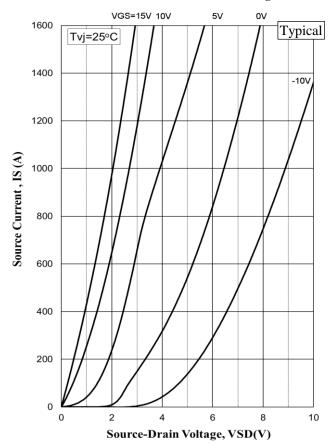
Circuit Diagram

SIC MODULE Spec.No.IGBT-SP-19013 R1 P4

1600

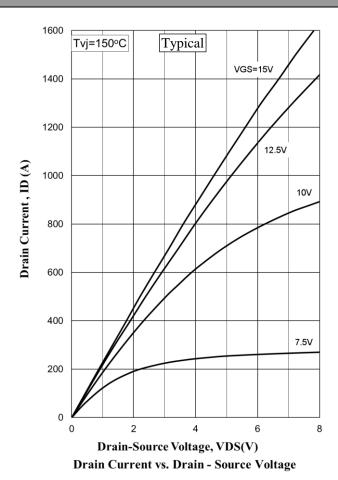

1400

1200


1000

Tvj=150°C

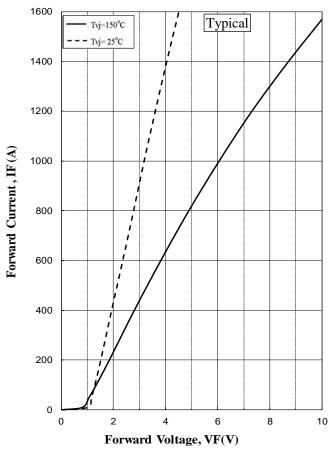
Target Specification



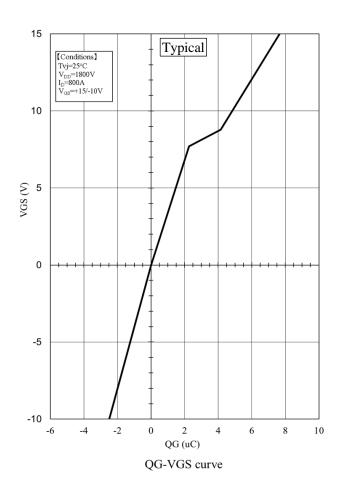
Drain Current vs. Drain - Source Voltage

Source Current vs. Source - Drain Voltage

Source Current, IS (A) 800 VGS=15V 600 400 200 10V

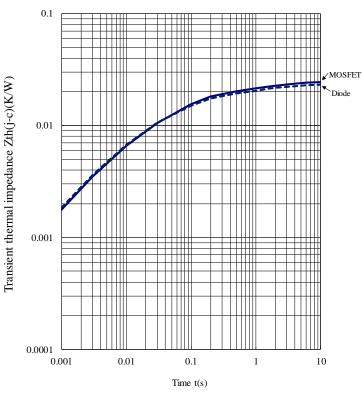

Typical

Source-Drain Voltage, VSD(V) Source Current vs. Source - Drain Voltage



MSL800FS33NLT

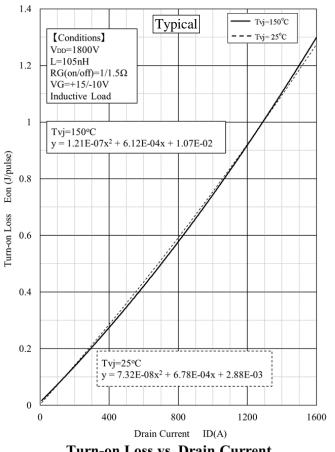
Target Specification



Forward Voltage of Chopper diode

Curve approximation model

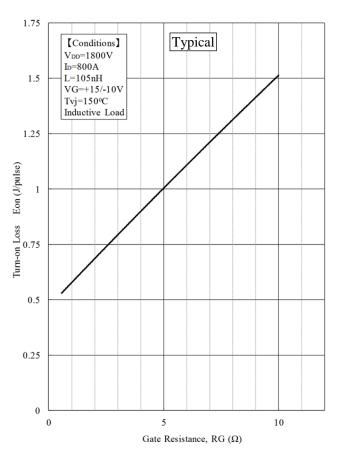
$\sum Zth[n]*(1-exp(-t/\tau th[n]))$										
n	1	2	3	4	Unit					
τth[n]	1.79E+00	9.81E-02	1.16E-02	8.72E-04	sec					
Zth[n,MOSFET]	5.52E-03	1.10E-02	6.41E-03	1.77E-03	K/W					
Zth[n.Diode]	5.07E-03	9.84E-03	6.73E-03	1.88E-03	K/W					

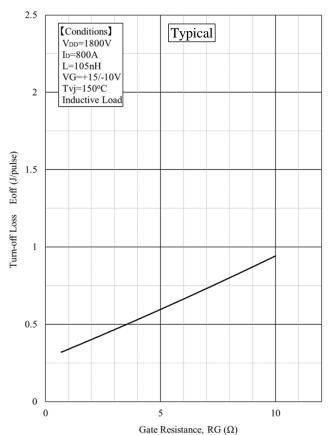


Transient Thermal Impedance Curve (Maximum Value)
HITACHI

Inspire the Next

SIC MODULE Spec.No.IGBT-SP-19013 R1 P6


Target Specification



Typical Tvj=150°C [Conditions] -- Tvj=25°C V_{DD}=1800V L=105nH $RG(on/off)=1/1.5\Omega$ VG=+15/-10V 0.8 Inductive Load Tvj=150°C y = 9.33E-08x2 + 3.99E-04x - 1.00E-02Turn-off Loss Eoff (J/pulse) 0.6 0.4 0.2 Tvj=25°C y = 6.84E-08x2 + 3.28x-04x - 7.67E-030 400 800 1200 1600 Drain Current ID (A)

Turn-on Loss vs. Drain Current

Turn-off Loss vs. Drain Current

Turn-on Loss vs. Gate Resistance

Turn-off Loss vs. Gate Resistance

SiC MODULE Spec.No.IGBT-SP-19013 R1 P7

MSL800FS33NLT

Target Specification

HITACHI POWER SEMICONDUCTORS

Notices

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.
- 2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
- 3. In cases where extremely high reliability is required(such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.
- 5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi Power Semiconductor Device, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi Power Semiconductor Device, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
- For inquiries relating to the products, please contact nearest overseas representatives which is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi-power-semiconductor-device.co.jp/en/

