MBL1200E17F

Silicon N-channel IGBT 1700V F version

1.FEATURES

- * Soft switching behavior & low conduction loss:
 - Soft low-injection punch-through with trench gate IGBT.
- * Low driving power:
 - Low input capacitance with advanced trench gate.
- * Low noise recovery: Ultra soft fast recovery diode.

2.ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Item		Symbol	Unit	MBL1200E17F		
Collector Emitter Voltage		Vces	V	1,700		
Gate Emitter Voltage		Vges	V	±20		
Collector Current	DC	Ic	۸	1,200		
Collector Current	1ms	ICp	1 A 1	2,400		
Forward Current	DC	lf(FWD)	А	1,200		
(Free wheel Diode) 1ms	IFM(FWD)		2,400		
Forward Current DC		IF(chopper)	Α	1,200		
(Chopper Diode) 1ms		IFM(chopper)		2,400		
Junction Temperature		Tj	°C	-50 ~ +150		
Storage Temperature		Tstg	°C	-55 ~ +125		
Isolation Test Voltage		Viso	VRMS	6,000(AC 1 minute)		
Screw Torque	Terminals (M4/M8)	-	N⋅m	2/15 (1)		
	Mounting (M6)	-	111,111	6 (2)		

Notes: (1) Recommended Value 1.8±0.2 / 15⁺⁰/₋₃N·m

(2) Recommended Value 5.5±0.5N·m

3.ELECTRICAL CHARACTERISTICS

1) IGBT + FWD

Item	Symbol	Unit	Min.	Тур.	Max.	Test Conditions	
Collector Emitter Cut-Off Current	ICES	mA	-	-	10	VcE=1,700V, VgE=0V, Tj=25°C	
			-	23	-	V _{CE} =1,700V, V _{GE} =0V, Tj=150°C	
Gate Emitter Leakage Current	IGES	nA	-500	-	+500	VGE=±20V, VCE=0V, Tj=25°C	
Collector Emitter Saturation Voltage	VCE(sat)	V	-	2.0	-	I _C =1,200A, V _{GE} =15V, Tj=25°C	
			-	2.4	-	Ic=1,200A, V _{GE} =15V, Tj=150°C	
Gate Emitter Threshold Voltage	VGE(TO)	V	4.1	5.5	7.1	V _{CE} =10V, I _C =120mA, Tj=25°C	
Input Capacitance	Cies	nF	-	63	-	V _{CE} =10V, V _{GE} =0V, f=100kHz, Tj=25°C	
Internal Gate Resistance	Rge	Ω	-	4	-	V _{CE} =10V, V _{GE} =0V, f=100kHz, Tj=25°C	
Turn On Delay Time	t _{d(on)}		-	0.74	1.70	V _{CC} =900V, Ic=1,200A,	
Rise Time	t _r		-	0.26	0.80	L=100nH,	
Turn Off Delay Time	t _{d(off)}	μS	-	1.9	3.0	$R_G(\text{on/off})=2.7/4.7\Omega$ (3)	
Fall Time	t _f		-	1.6	3.0	V _{GE} =±15V, Tj=150°C	
Turn On Loss	Eon	J/P	-	0.40	0.90		
Turn Off Loss	E _{off}	J/P	-	0.93	1.5		
Peak Forward Voltage Drop	VFM	\ \	-	2.0	-	IF=1,200A, V _{GE} =0V, Tj=25°C	
T Cak I of Ward Voltage Drop	V 1 101					Measured at auxiliary terminals	
			-	2.3	-	IF=1,200A, V _{GE} =0V, Tj=150°C	
						Measured at auxiliary terminals	
Reverse Recovery Time	t _{rr}	μS	-	0.65	1.5	V _{CC} =900V, IF=1,200A,	
Reverse Recovery Loss	Err	J/P	-	0.48	1.0	L=100nH, R _G (on/off)=2.7/4.7 Ω (3) V _{GE} = \pm 15V, Tj=150°C	
Thermal Impedance	Rth(j-c)	K/W	-	-	0.022	Junction to case	
FWD	Rth(j-c)	17/77	-	-	0.033	Juniculon to case	
Contact Thermal Impedance	Rth(c-f)	K/W	-	0.016	-	Case to fin (at IGBT+FWD part)	

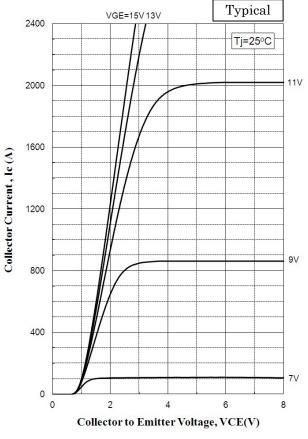
2) Chopper DIODE

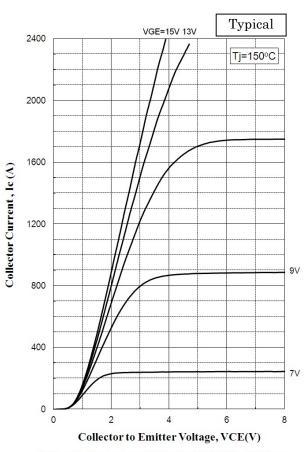
Item	Symbol	Unit	Min.	Тур.	Max.	Test Conditions	
Repetitive Reverse Current	IRRM	mA	-	-	10.0	VR=1,700V, Tj=25°C	
Repetitive Reverse Current	IRRIVI		-	23	-	VR=1,700V, Tj=150°C	
		V	-	2.1	ı	IF=1,200A, Tj=25°C	
Peak Forward Voltage Drop	VF					Measured at main terminal	
(Between main terminals)	V F			2.4		IF=1,200A, Tj=150°C	
						Measured at main terminal	
Reverse Recovery Time	trr	μS	-	0.65	1.5	V _{CC} =900V, I _F =1,200A,	
Poverse Pessyery Less	Err	J/P	-	0.48		L=100nH, $R_G(on)=2.7\Omega$ (3)	
Reverse Recovery Loss	□ □rr					V _{GE} =±15V, Tj=150°C	
Thermal Impedance	Rth(j-c)	K/W			0.033	Junction to case	
Contact Thermal Impedance	ontact Thermal Impedance Rth(c-f) K/W - 0.016 - Case to fin (at Chopper Dioc		Case to fin (at Chopper Diode part)				

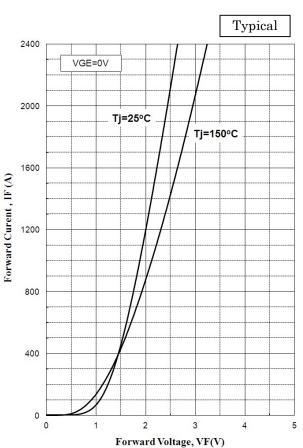
Notes: (3) R_G value is the test condition's value for decision of the switching times, not recommended value. Please, determine the suitable R_G value after the measurement of switching waveforms(overshoot voltage, etc.)with appliance mounted.

- * Please contact our representatives at order.
- * For improvement, specifications are subject to change without notice.
- * For actual application, please confirm this spec sheet is the newest revision
- * ELECTRICAL CHARACTERISTIC items shown in above table are according to IEC 60747-2 and IEC 60747-9.

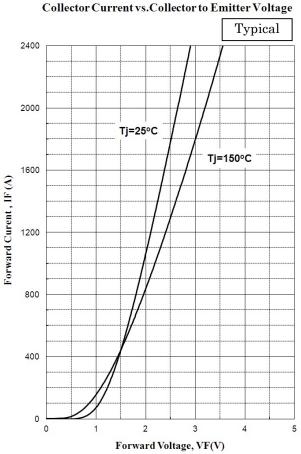
4. Material declaration


Please note the following materials are contained in the product, in order to keep characteristic and reliability level.

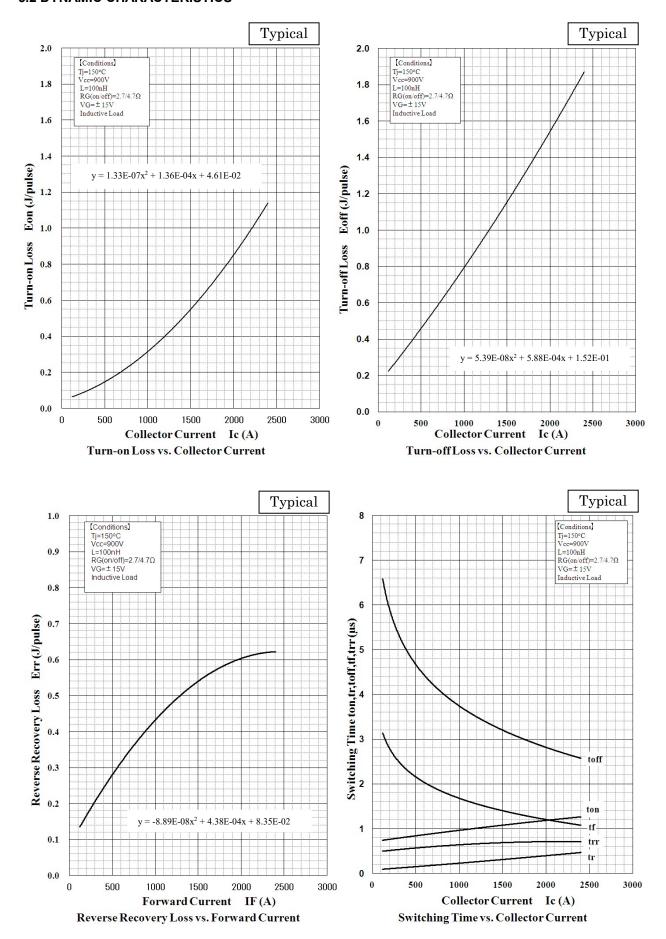

Material	Contained part		
Lead (Pb) and its compounds	Solder		



MBL1200E17F

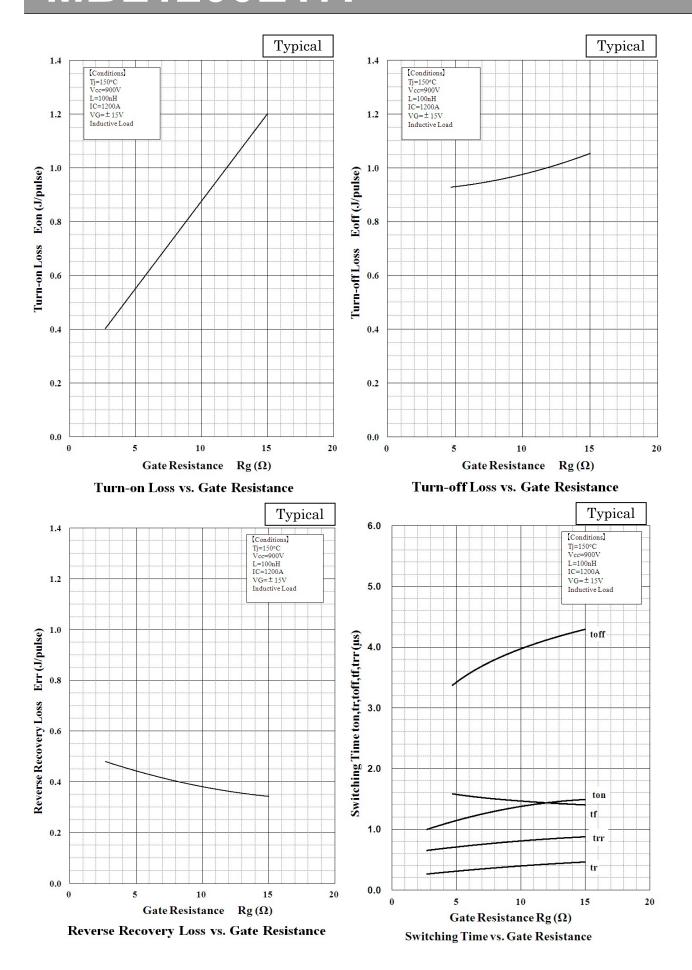

5.CHARACTERISTICS CURVE 5.1 STATIC CHARACTERISTICS

Forward Voltage of free-wheeling diode

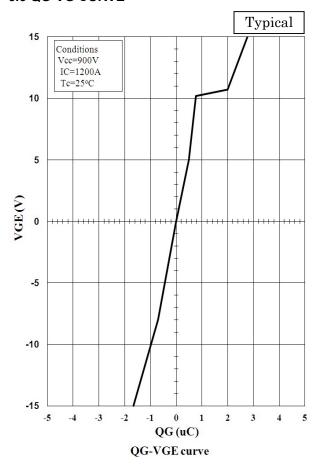


Forward Voltage of Chopper diode

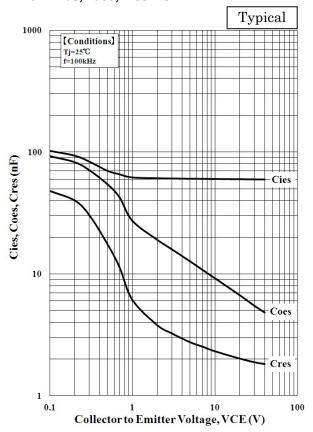
HITACHI Inspire the Next


MBL1200E17F

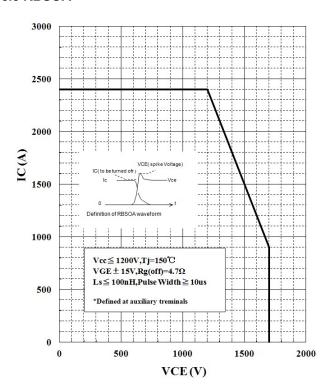
5.2 DYNAMIC CHARACTERISTICS



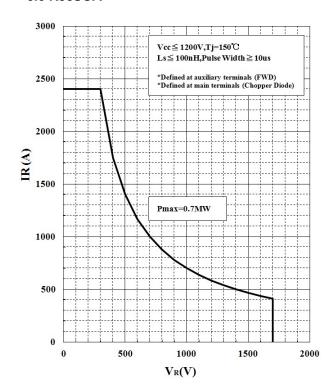
MBL1200E17F



5.3 QG-VG CURVE

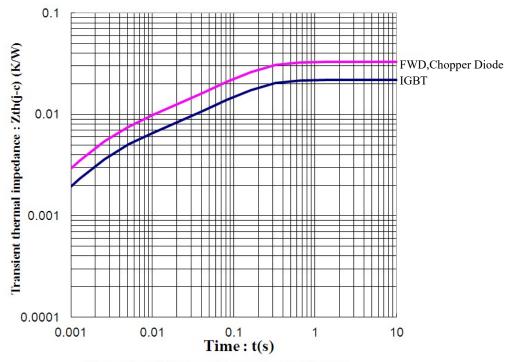


5.4 Cies, Coes, Cres CURVE



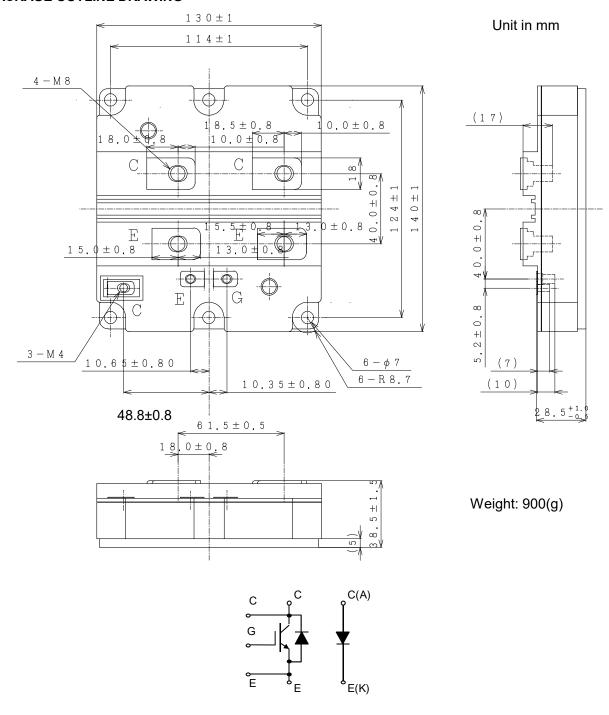
Capacitance vs. Collector to Emitter Voltage

5.5 RBSOA


5.6 RecSOA

MBL1200E17F

6. TRANSIENT THERMAL IMPEDANCE


Transient Thermal Impedance Curve

Curve approximation model $Zth = \Sigma rth[n]*(1-exp(-t/\tau th[n]))$

n	1	2	3	4	Unit
T th[n]	1.45E-01	2.03E-02	2.33E-03	3.16E-04	sec
rth[n,IGBT]	1.41E-02	3.76E-03	3.74E-03	4.21E-04	K/W
rth[n,Diode]	2.10E-02	5.93E-03	5.45E-03	6.50E-04	K/W

7. PACKAGE OUTLINE DRAWING

Circuit diagram

HITACHI POWER SEMICONDUCTORS

Notices |

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.
- 2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
- 3. In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.
- 5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi Power Semiconductor Device, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi Power Semiconductor Device, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
- For inquiries relating to the products, please contact nearest overseas representatives that is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi-power-semiconductor-device.co.jp/en/

