Silicon N-channel IGBT 1700V F version

1. FEATURES

- * Soft switching behavior & low conduction loss: Soft low-injection punch-through with trench gate IGBT.
- * Low driving power:
 - Low input capacitance advanced trench gate.
- * Low noise recovery: Ultra soft fast recovery diode.

2.ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Item		Symbol	Unit	MBM1200E17F	
Collector Emitter Voltage		VCES	V	1,700	
Gate Emitter Voltage		V _{GES}	V	±20	
Collector Current	DC	lc	А	1,200	
Collector Current	1ms	ICp		2,400	
Forward Current	DC	lF	А	1,200	
	1ms	IFM	A	2,400	
Junction Temperature		T _{j op}	°C	-50 ~ +150	
Storage Temperature		Tstg	°C	-55 ~ +125	
Isolation Voltage		Viso	VRMS	4,000(AC 1 minute)	
Serow Torque	als (M4/M8)	-	N∙m	2/15 (1)	
Screw Torque Mountin	ng (M6)	-	11,111	6 (2)	

Notes: (1) Recommended Value 1.8±0.2/15⁺⁰-₃N·m (2) Recommended Value 5.5±0.5N·m

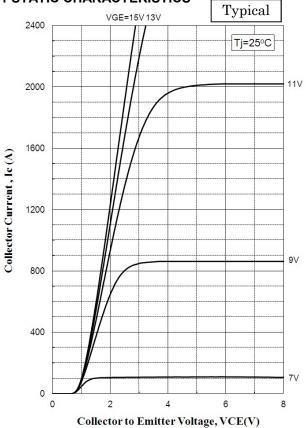
3.ELECTRICAL CHARACTERISTICS

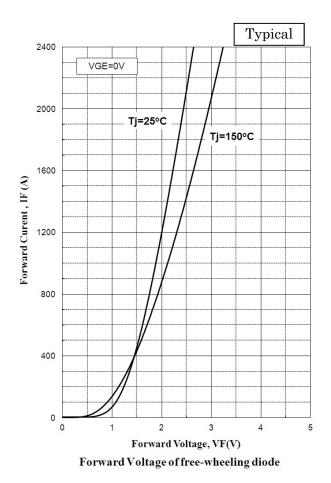
Item		Symbol	Unit	Min.	Тур.	Max.	Test Conditions	
Collector Emitter Cut-Off Current		I CES	mA	-	-	10	V _{CE} =1,700V, V _{GE} =0V, Tj=25°C	
				-	23	-	V _{CE} =1,700V, V _{GE} =0V, Tj=150°C	
Gate Emitter Leakage	Current	IGES	nA	-500	-	+500	V _{GE} =±20V, V _{CE} =0V, Tj=25°C	
Collector Emitter Saturation Voltage		V _{CE(sat)}	V	-	2.0	-	Ic=1,200A, V _{GE} =15V, Tj=25°C	
				-	2.4	-	I _C =1,200A, V _{GE} =15V, Tj=150°C	
Gate Emitter Threshold Voltage		V _{GE(TO)}	V	4.1	5.5	7.1	V _{CE} =10V, I _C =120mA, Tj=25°C	
Input Capacitance		Cies	nF	-	63	-	V _{CE} =10V, V _{GE} =0V, f=100kHz, Tj=25°C V _{CE} =10V, V _{GE} =0V, f=100kHz, Tj=25°C	
Internal Gate Resistance		Rge	Ω	-	4	-		
Turn On Delay Time		t _{d(on)} t _r t _{d(off)}		-	0.74	1.7	V _{CC} =900V, Ic=1,200A	
Rise Time			μs	-	0.26	0.8	Ls=100nH (3)	
Turn Off Delay Time				-	1.9	3.0	R _G (on/off)=2.7/4.7Ω (3)	
Fall Time		tr		-	1.6	3.0	V _{GE} =±15V, Tj=150°C	
Peak Forward Voltage Drop		V _{FM}	V	-	2.0	-	IF=1,200A, V _{GE} =0V, Tj=25°C	
				-	2.3	-	IF=1,200A, V _{GE} =0V, Tj=150°C	
Reverse Recovery Time		t _{rr}	μs	-	0.65	1.5	Vcc=900V, Ic=1,200A	
Turn On Loss		Eon	J/P	-	0.31	-	Ls=100nH (3)	
Turn Off Loss		Eoff	J/P	-	0.93	-	$R_{G}(\text{on/off})= 2.7/4.7\Omega$ (3)	
Reverse Recovery Loss		Err	J/P	-	0.44	-	V _{GE} =±15V, Tj=150°C	
Stray inductance in module		LSCE	nH	-	21	-	Per 1 arm	
Thermal Impedance	IGBT	Rth(j-c)	K/W	-	-	0.022	Junction to case	
	FWD	Rth(j-c)	17/11	-	-	0.033		
Contact	Thermal						Case to fin (λgrease=1W/(m⋅K),	
Impedance		Rth(c-f)	K/W	-	0.016	-	heat-sink flatness ≤50um), per 1 arm	
							//1	

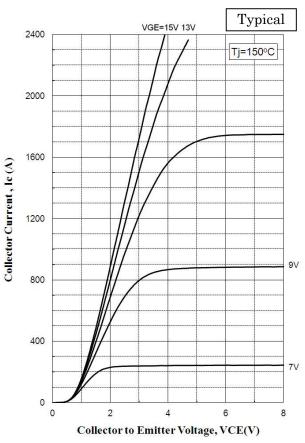
Notes:(3) Ls and R_G are the test condition's values for evaluation of the switching times, not recommended value. Please, determine the suitable R_G value after the measurement of switching waveforms

(overshoot voltage, etc.) with appliance mounted.

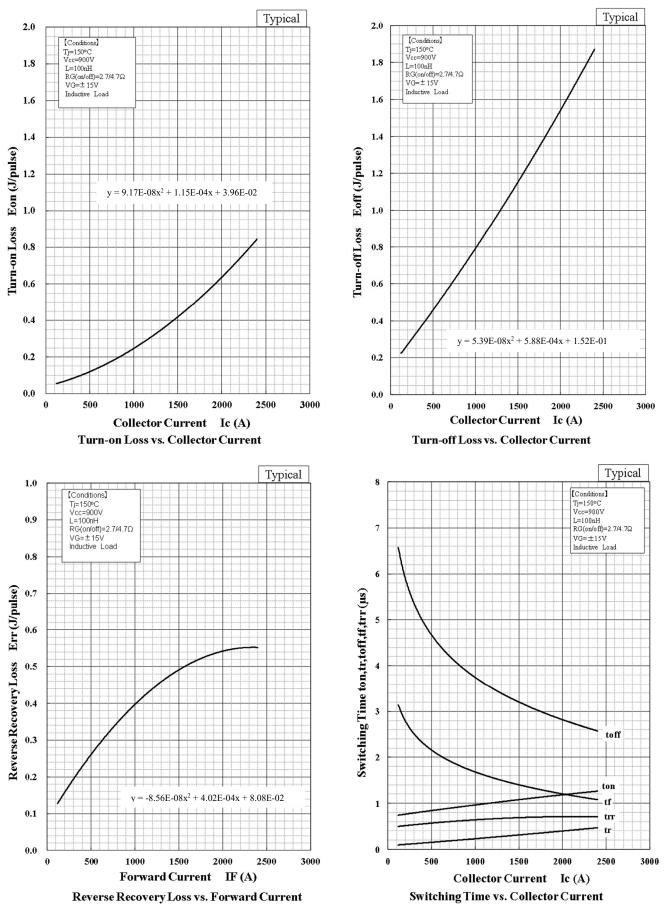
* Please contact our representatives at order.

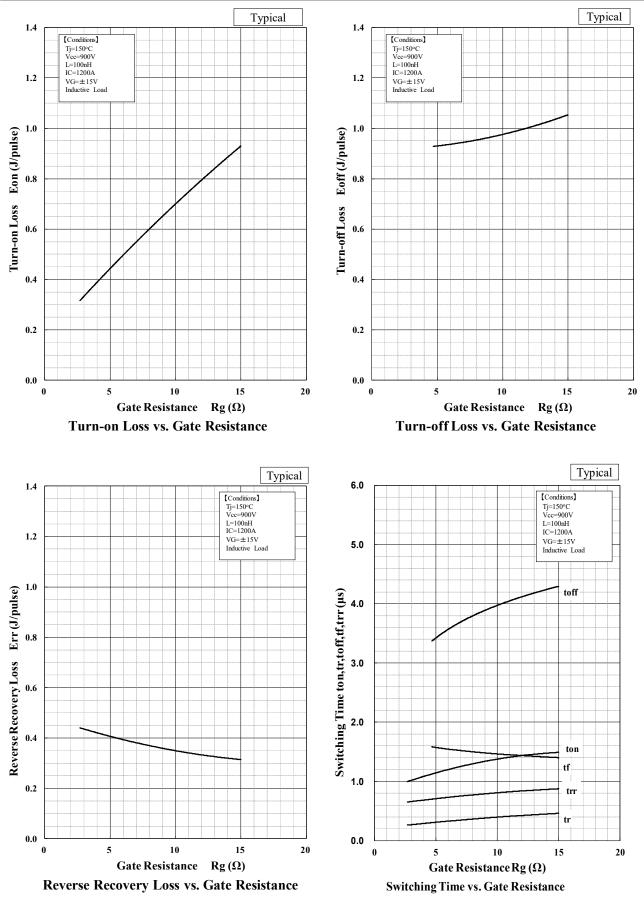

* For improvement, specifications are subject to change without notice.


* For actual application, please confirm this spec sheet is the newest revision.

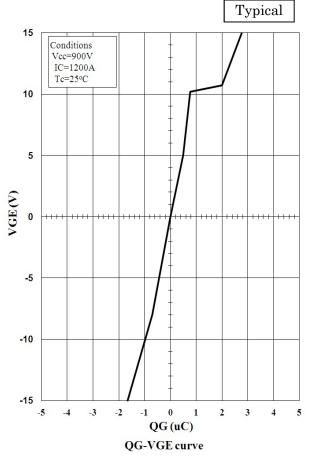

* ELECTRICAL CHARACTERISTIC items shown in above table are according to IEC 60747–2 and IEC 60747–9.

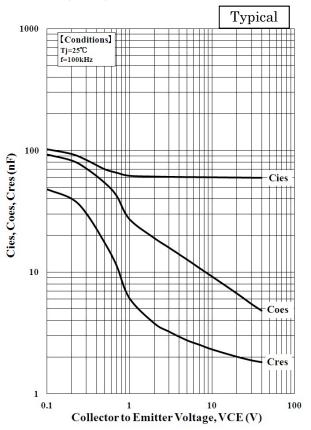
4.CHARACTERISTICS CURVE 4.1 STATIC CHARACTERISTICS




Collector Current vs.Collector to Emitter Voltage

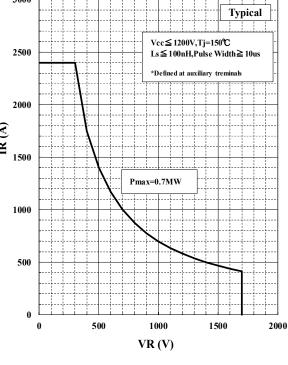
4.2 DYNAMIC CHARACTERISTICS




IGBT MODULE

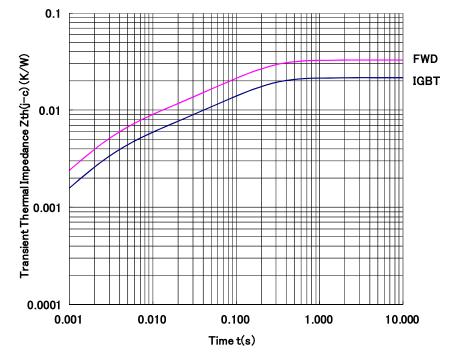
4.3 QG-VG CURVE

4.4 Cies, Coes, Cres CURVE



Capacitance vs. Collector to Emitter Voltage

4.5 RBSOA


3000 3000 Typical 2500 2500 2000 2000 IC(A) IR (A) ned of 1500 1500 Definition of RBSOA waveform 1000 1000 Vcc≦1200V,Tj=150°C VGE \pm 15V,Rg(off)=4.7 Ω Ls≦ 100nH,Pulse Width≧ 10us 500 500 fined at auxiliary trem 0 0 0 500 1000 1500 2000 500 0 VCE (V) **RBSOA** RecSOA

4.6 RecSOA

HITA СНІ **Inspire the Next**

5.TRANSIENT THERMAL IMPEDANCE

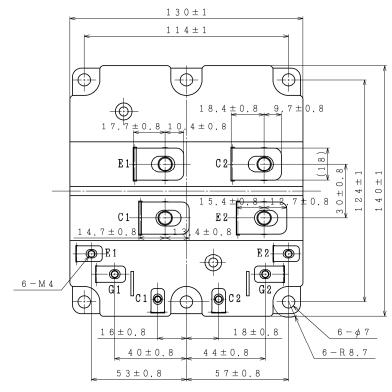
Transient Thermal Impedance Curve

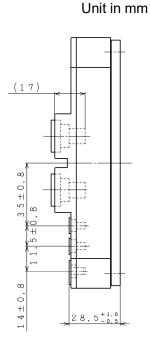
Curve approximation model

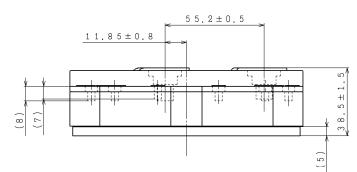
(ΣZth[n]*(1-exp(-t/τth[n])))

n	1	2	3	4	Unit
т th[n]	1.62E-01	2.45E-02	3.11E-03	5.44E-04	sec
rth[n,IGBT]	1.39E-02	3.60E-03	3.61E-03	4.97E-04	K/W
rth[n,Diode]	2.11E-02	5.79E-03	5.34E-03	7.82E-04	K/W

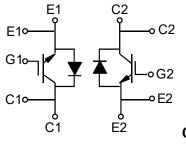
IGBT MODULE


MBM1200E17F


6. Material declaration


Please note the following materials are contained in the product, in order to keep characteristic and reliability level.

Material	Contained part		
Lead (Pb) and its compounds	Solder		


7. Outline Drawing

Weight: 900g

Circuit Diagram

HITACHI POWER SEMICONDUCTORS

Notices

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.
- 2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
- 3. In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.
- 5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi Power Semiconductor Device, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi Power Semiconductor Device, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

■ For inquiries relating to the products, please contact nearest overseas representatives that is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi-power-semiconductor-device.co.jp/en/

