MBM1000FS17G

Silicon N-channel IGBT 1700V G version

FEATURES
- High current density package
- Low stray inductance & low Rth(j-c)
- Half-bridge (2in1)
- Built in temperature sensor
- Scalable large current easily handled by paralleling
- Equipped with current sensing terminals

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Emitter Voltage</td>
<td>VCES</td>
<td>V</td>
<td>1,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Emitter Voltage</td>
<td>VGES</td>
<td>V</td>
<td>±20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Current DC, 1ms</td>
<td>IC</td>
<td>mA</td>
<td>-</td>
<td>1</td>
<td>20</td>
<td>VCES=1,700V, VGES=0V, TJ=25°C</td>
</tr>
<tr>
<td>1ms Collector Current</td>
<td>IC</td>
<td>mA</td>
<td>-</td>
<td>10</td>
<td>76</td>
<td>VCES=1,700V, VGES=0V, TJ=150°C</td>
</tr>
<tr>
<td>Forward Current DC, 1ms</td>
<td>IF</td>
<td>mA</td>
<td>-</td>
<td>1</td>
<td>2.1</td>
<td>VCES=1,000A, VGES=15V, TJ=25°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>TJ</td>
<td>°C</td>
<td>-25</td>
<td></td>
<td>150</td>
<td>VCES=10V, IC=1,000mA, TJ=25°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>TSS</td>
<td>°C</td>
<td>-25</td>
<td></td>
<td>150</td>
<td>VCES=200V, VGES=0V, TJ=25°C</td>
</tr>
<tr>
<td>Isolation Voltage</td>
<td>VISO</td>
<td>V</td>
<td>4.000</td>
<td></td>
<td></td>
<td>4.000(AC 1 minute)</td>
</tr>
<tr>
<td>Screw Torque (M3/M8)</td>
<td></td>
<td></td>
<td>0.8/15</td>
<td></td>
<td>6.0</td>
<td>(1)</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Emitter Cut-Off Current</td>
<td>ICES</td>
<td>mA</td>
<td>-</td>
<td>1</td>
<td>20</td>
<td>VCES=1,700V, VGES=0V, TJ=25°C</td>
</tr>
<tr>
<td>Gate Emitter Leakage Current</td>
<td>IGE</td>
<td>nA</td>
<td>-500</td>
<td>10</td>
<td>76</td>
<td>VCES=10V, VGES=0V, IC=100kHz, TJ=25°C</td>
</tr>
<tr>
<td>Collector Emitter Saturation Voltage</td>
<td>VCESat</td>
<td>V</td>
<td>1.7</td>
<td>1.85</td>
<td>2.6</td>
<td>IC=1,000A, TJ=25°C</td>
</tr>
<tr>
<td>Gate Emitter Threshold Voltage</td>
<td>VGIES</td>
<td>V</td>
<td>5.5</td>
<td>6.5</td>
<td>7.5</td>
<td>VCES=10V, IC=1,000mA, TJ=25°C</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>Ciss</td>
<td>nF</td>
<td>-</td>
<td>1.0</td>
<td>5.0</td>
<td>VCES=10V, VGES=0V, IC=100kHz, TJ=25°C</td>
</tr>
<tr>
<td>Internal Gate Resistance</td>
<td>RG</td>
<td>Ω</td>
<td>-</td>
<td>0.2</td>
<td>0.6</td>
<td>Ls=40nH</td>
</tr>
<tr>
<td>Switching Times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time</td>
<td>tR</td>
<td>µs</td>
<td>-</td>
<td>0.2</td>
<td>0.6</td>
<td>VCES=900V, IC=1,000A</td>
</tr>
<tr>
<td>Turn On Time</td>
<td>ton</td>
<td>µs</td>
<td>-</td>
<td>0.6</td>
<td>0.8</td>
<td>R(on/off)=2.7Ω/10Ω</td>
</tr>
<tr>
<td>Fall Time</td>
<td>tf</td>
<td>µs</td>
<td>-</td>
<td>0.8</td>
<td>1.9</td>
<td>VCES=15V, TJ=150°C</td>
</tr>
<tr>
<td>Turn Off Time</td>
<td>toff</td>
<td>µs</td>
<td>-</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Voltage Drop</td>
<td>Vf</td>
<td>V</td>
<td>-</td>
<td>1.75</td>
<td>2.35</td>
<td>IP=1,000A, VCES=0V, TJ=25°C</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>tr</td>
<td>µs</td>
<td>-</td>
<td>0.5</td>
<td></td>
<td>VCES=900V, IP=1,000A, Ls=40nH, TJ=150°C</td>
</tr>
<tr>
<td>Turn-on Loss per Pulse</td>
<td>Eon</td>
<td>J/P</td>
<td>-</td>
<td>0.39</td>
<td>0.38</td>
<td>R(on/off)=2.7Ω/10Ω</td>
</tr>
<tr>
<td>Turn-off Loss per Pulse</td>
<td>Eoff</td>
<td>J/P</td>
<td>-</td>
<td>0.38</td>
<td>0.39</td>
<td>VCES=15V, TJ=150°C</td>
</tr>
<tr>
<td>Reverse Recovery Loss per Pulse</td>
<td>Err</td>
<td>J/P</td>
<td>-</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Pulse Width</td>
<td>tsc</td>
<td>µs</td>
<td>6</td>
<td></td>
<td></td>
<td>VCES=1300V, L=40nH</td>
</tr>
<tr>
<td>Stray Inductance Module</td>
<td>Lsce</td>
<td>nH</td>
<td>-</td>
<td>9</td>
<td></td>
<td>Between C1 (main) and E2 (main)</td>
</tr>
<tr>
<td>NTC-Thermistor</td>
<td>Rss</td>
<td>Ω</td>
<td>-</td>
<td>5</td>
<td></td>
<td>TC=25°C</td>
</tr>
<tr>
<td>Deviation</td>
<td>ΔR/R</td>
<td>%</td>
<td>-5</td>
<td>5</td>
<td></td>
<td>TC=25°C</td>
</tr>
<tr>
<td>B-constant</td>
<td>B2500</td>
<td>K</td>
<td>3375</td>
<td></td>
<td></td>
<td>Between 25°C and 50°C</td>
</tr>
<tr>
<td>Thermal Impedance</td>
<td>Rth</td>
<td>K/W</td>
<td>0.032</td>
<td></td>
<td></td>
<td>Junction to case</td>
</tr>
<tr>
<td>Contact Thermal Impedance</td>
<td>Rth</td>
<td>K/W</td>
<td>0.053</td>
<td></td>
<td></td>
<td>Case to fin (per 1 arm)</td>
</tr>
</tbody>
</table>

Notes: (1) Recommended Value 5.5±0.5N·m

Notes: (2) Rth value is a test condition value for evaluation, not recommended value.

Please determine the suitable Rth value by measuring switching behavior and checking results with the respective SOA.

* Please contact our representatives at order.
* For improvement, specifications are subject to change without notice.
* For actual application, please confirm this spec sheet is the newest revision.

* ELECTRICAL CHARACTERISTIC values according to IEC 60747–2 IEC 60747–9
MBM1000FS17G

OUTLINE DRAWING

Weight: 770(g)

Unit in mm
Collector Current vs. Collector to Emitter Voltage

- **Typical**
 - Collector Current, $I_C (A)$
 - Collector-Emitter Voltage, $V_{CE} (V)$
 - $T_{j}=150°C$
 - $T_{j}=25°C$

- **Forward Current vs. Forward Voltage**
 - Forward Current, $I_F (A)$
 - Forward Voltage, $V_F (V)$
 - $T_{j}=150°C$
 - $T_{j}=25°C$

- **QG-VGE Curve**
 - $QG (\mu C)$
 - $V_{GE} (V)$
 - Conditions:
 - $T_{j}=25°C$
 - $V_{CC} = 900V$
 - $I_C = 1000A$
 - $V_{GE} = \pm 15V$
MBM1000FS17G

IGBT MODULE

Spec.No.IGBT-SP-16034 R4 P 4

Turn-on Loss vs. Collector Current

- **Conditions**
 - $T_j = 150°C$
 - $L_s = 40nH$
 - $V_{CC} = 900V$
 - $R_G = 2.7Ω/10Ω$
 - $V_{GE} = ±15V$

- **Equation**

 $y = 1.7450E-16x^6 - 6.8290E-13x^5 + 9.2449E-10x^4 - 3.6990E-07x^3 + 3.2773E-04x + 1.7363E-02$

Turn-off Loss vs. Collector Current

- **Conditions**
 - $T_j = 150°C$
 - $L_s = 40nH$
 - $V_{CC} = 900V$
 - $R_G = 2.7Ω/10Ω$
 - $V_{GE} = ±15V$

- **Equation**

 $y = 1E-20x^6 - 2E-17x^5 - 1E-13x^4 + 4E-10x^3 - 5E-07x^2 + 0.0006x + 0.0305$

Reverse Recovery Loss vs. Forward Current

- **Equation**

 $y = 6E-11x^3 - 3E-07x^2 + 0.0006x + 0.0503$

Switching time vs. Collector Current

- **Equation**

 $y = 1E+20x^6 - 3E+17x^5 - 2E+13x^4 + 9.2449E+10x^3 - 3.6990E+07x^2 + 3.2773E+04x + 1.7363E+02$

IGBT Specifications

- **Turn-on Loss, E_{on} (J/pulse)**
- **Turn-off Loss, E_{off} (J/pulse)**
- **Reverse Recovery Loss, E_{rr} (J/pulse)**
- **Switching time, t_{on}, t_{off}, t_{rr} (us)**

Graphs and Equations

- **Graphs** for Turn-on Loss, Turn-off Loss, Reverse Recovery Loss, and Switching time vs. Collector Current.

Note:

- All graphs and equations are typical values under specified conditions.

Reference:

- **Hitachi**
 - **Insight the Next**

MBM1000FS17G

IGBT MODULE

Spec.No.IGBT-SP-16034 R4 P 5

Turn-on Loss vs. Gate Resistance

Conditions:
- $V_{G}=150^\circ\text{C}$
- $L_s=40\text{nH}$
- $V_{CC}=900\text{V}$
- $I_c=1000\text{A}$
- $V_{GE}=\pm 15\text{V}$

![Graph showing Turn-on Loss vs. Gate Resistance](image)

Turn-off Loss vs. Gate Resistance

Conditions:
- $V_{G}=150^\circ\text{C}$
- $L_s=40\text{nH}$
- $V_{CC}=900\text{V}$
- $I_c=1000\text{A}$
- $V_{GE}=\pm 15\text{V}$

![Graph showing Turn-off Loss vs. Gate Resistance](image)

Recovery Loss vs. Gate Resistance

Conditions:
- $V_{G}=150^\circ\text{C}$
- $L_s=40\text{nH}$
- $V_{CC}=900\text{V}$
- $I_c=1000\text{A}$
- $V_{GE}=\pm 15\text{V}$

![Graph showing Recovery Loss vs. Gate Resistance](image)

Switching time vs. Gate Resistance

Conditions:
- $V_{G}=150^\circ\text{C}$
- $L_s=40\text{nH}$
- $V_{CC}=900\text{V}$
- $I_c=1000\text{A}$
- $V_{GE}=\pm 15\text{V}$

![Graph showing Switching time vs. Gate Resistance](image)
 reverse bias safe operation area (RBSOA)

Reverse Recovery SOA

Conditions:
Ls ≤ 40nH, Vcc ≤ 1200V, IF ≤ 2000A, di/dt ≤ 8000A/us, Tj = 150°C

Definition of Recovery di/dt

\[\Delta t = \frac{0.5I_{rm}}{I_{rm}} \]

Reverse Recovery SOA

\[P_{max} \leq 1.2 \text{MW} \]
MBM1000FS17G

IGBT MODULE

Transient Thermal Impedance Curve

- **Maximum**

<table>
<thead>
<tr>
<th>n</th>
<th>t_{th}[n]</th>
<th>Z_{th}[n,IGBT]</th>
<th>Z_{th}[n,Diode]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.67E-01</td>
<td>2.36E-02</td>
<td>3.57E-02</td>
</tr>
<tr>
<td>2</td>
<td>1.20E-02</td>
<td>4.47E-03</td>
<td>1.31E-02</td>
</tr>
<tr>
<td>3</td>
<td>1.17E-03</td>
<td>3.79E-03</td>
<td>4.08E-03</td>
</tr>
<tr>
<td>4</td>
<td>1.03E-04</td>
<td>1.03E-04</td>
<td>1.06E-04</td>
</tr>
</tbody>
</table>

Unit
- t_{th}[n]: sec
- Z_{th}[n]: K/W

- **Time**
- **Maximum Transient Thermal Impedance Curve**

Thermistor Resistance vs. Temperature

Typical

- **Conditions**
 - Tj=25°C
 - f=100kHz

Capacitance vs. Collector to Emitter Voltage

- **Conditions**
 - Tj=25°C
 - f=100kHz
HITACHI POWER SEMICONDUCTORS

Notices

1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.

2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.

3. In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users’ fail-safe precautions or other arrangement. Or consult Hitachi’s sales department staff.

4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user’s units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.

5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi Power Semiconductor Device, Ltd.

7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi Power Semiconductor Device, Ltd.

8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

For inquiries relating to the products, please contact nearest overseas representatives that is located “Inquiry” portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi-power-semiconductor-device.co.jp/en/