Silicon N-channel Side-gate HiGT and Ex-SFD 1700V G2 Version

FEATURES

- Superior thermal reliability by sintered Cu bonding
- Low power dissipation by side-gate HiGT
- Soft & fast response characteristic
- Low noise & easy drive through low Cies and Cres of side-gate HiGT
- High current density & half-bridge nHPD module
- Scalable large current easily handled by paralleling
- Low stray inductance & low Rth(j-c)
- Built in temperature sensor
- Equipped with current sensing terminals

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Emitter Voltage</td>
<td>VCES</td>
<td>V</td>
<td>1,700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Emitter Voltage</td>
<td>VGES</td>
<td>V</td>
<td>±20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector Current</td>
<td>IC</td>
<td>A</td>
<td>1,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Current</td>
<td>IF</td>
<td>A</td>
<td>1,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>VJ</td>
<td>°C</td>
<td>-50</td>
<td>+175</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>TSTG</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation Voltage</td>
<td>VISO</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw Torque</td>
<td>M</td>
<td>N·m</td>
<td>0.8/15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td></td>
<td>6.0</td>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Recommended Value 5.5±0.5N·m

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Unit</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector Emitter Cut-Off Current</td>
<td>ICES</td>
<td>mA</td>
<td></td>
<td></td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Gate Emitter Leakage Current</td>
<td>IGES</td>
<td>nA</td>
<td>500</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Collector Emitter Saturation Voltage</td>
<td>VCES</td>
<td>V</td>
<td>1.5</td>
<td>1.95</td>
<td>2.35</td>
<td>Ic=1200A, VGE=15V, Tj=25°C</td>
</tr>
<tr>
<td>Gate Emitter Threshold Voltage</td>
<td>VGES</td>
<td>V</td>
<td></td>
<td></td>
<td>70</td>
<td>Vc=10V, Ic=200mA, Tj=25°C</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>CIES</td>
<td>pF</td>
<td>50</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Internal Gate Resistance</td>
<td>RGES</td>
<td>Ω</td>
<td>6.8</td>
<td></td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Rise Time</td>
<td>tr</td>
<td>μs</td>
<td>0.25</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Turn On Time</td>
<td>tON</td>
<td>μs</td>
<td>0.95</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Fall Time</td>
<td>tf</td>
<td>μs</td>
<td>0.55</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Turn Off Time</td>
<td>tOFF</td>
<td>μs</td>
<td>1.30</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Peak Forward Voltage Drop</td>
<td>VF</td>
<td>V</td>
<td>1.40</td>
<td>1.85</td>
<td>2.30</td>
<td>Ic=1200A, VGE=0V, Tj=25°C</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>tr</td>
<td>μs</td>
<td>0.75</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Turn-on Loss per Pulse</td>
<td>Eon</td>
<td>J/P</td>
<td>0.46</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Turn-off Loss per Pulse</td>
<td>Eoff</td>
<td>J/P</td>
<td>0.46</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Reverse Recovery Loss per Pulse</td>
<td>Eoff</td>
<td>J/P</td>
<td>0.47</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Short Circuit Pulse Width</td>
<td>tscc</td>
<td>μs</td>
<td>6</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Stray Inductance in Module</td>
<td>LSCC</td>
<td>nH</td>
<td>9</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>NTC-Thermistor</td>
<td>R2S</td>
<td>kΩ</td>
<td>5</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Deviation</td>
<td>∆R/R</td>
<td>%</td>
<td>-5</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>B-constant</td>
<td>B25</td>
<td>K</td>
<td>3375</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Thermal Impedance</td>
<td>RTH(c)</td>
<td>KW</td>
<td>0.032</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Contact Thermal Impedance</td>
<td>RTH(c)</td>
<td>KW</td>
<td>0.053</td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: (2)(3) Ls and R0 are the test condition's values for evaluation of the switching times, not recommended value.

Please determine the suitable R0 value by measuring switching behavior and checking results with the respective SOA.

* Please contact our representatives at order.
* For improvement, specifications are subject to change without notice.
* For actual application, please confirm this spec sheet is the newest revision.
* ELECTRICAL CHARACTERISTIC values according to IEC 60747–2 IEC 60747–9
OUTLINE DRAWING

Weight: 770(g)
IGBT Module

MBM1200GS17G2

Target Specification

Collector Current vs. Collector to Emitter Voltage

- **Typical**
 - $V_{GE} = 15V$
 - $T_{vj} = 25^\circ C$
 - $9V$
 - $11V$
 - $13V$

Collector Current vs. Collector to Emitter Voltage

- **Typical**
 - $V_{GE} = 15V$
 - $T_{vj} = 175^\circ C$
 - $7V$
 - $9V$

Forward Voltage of free-wheeling diode

- **Typical**
 - $V_{cc} = 900V$
 - $I_C = 1200A$

QG - VGE curve

- **Conditions**
 - $T_{vj} = 25^\circ C$
 - $V_{cc} = 900V$
 - $I_C = 1200A$
 - $V_{GE} = \pm 15V$
IGBT Module

MBM1200GS17G2

Target Specification

Turn-on Loss vs. Collector Current

Turn-off Loss vs. Collector Current

Recovery Loss vs. Forward Current

Conditions

$L_s=40\text{nH}$

$V_{CC}=900\text{V}$

$R_g=2.2\Omega/2.2\Omega$

$V_{GE}=\pm15\text{V}$

$T_{vj}=25^\circ\text{C}$

$y = 1.12\text{E-10}x^3 - 1.29\text{E-07}x^2 + 3.66\text{E-04}x + 1.28\text{E-02}$

$T_{vj}=175^\circ\text{C}$

$y = 6.60\text{E-11}x^3 - 7.70\text{E-08}x^2 + 2.90\text{E-04}x + 3.66\text{E-03}$

$T_{vj}=25^\circ\text{C}$

$y = -9.82\text{E-12}x^3 + 2.95\text{E-08}x^2 + 2.10\text{E-04}x + 3.07\text{E-02}$

$T_{vj}=175^\circ\text{C}$

$y = 1.09\text{E-12}x^3 - 2.57\text{E-08}x^2 + 3.58\text{E-04}x + 6.35\text{E-02}$
MBM1200GS17G2

Target Specification

Turn-on Loss vs. Gate Resistance

- **Conditions**
 - \(L_s = 40 \text{nH} \)
 - \(V_{cc} = 900 \text{V} \)
 - \(I_c = 1200 \text{A} \)
 - \(V_{ge} = \pm 15 \text{V} \)

Turn-off Loss vs. Gate Resistance

- **Conditions**
 - \(L_s = 40 \text{nH} \)
 - \(V_{cc} = 900 \text{V} \)
 - \(I_c = 1200 \text{A} \)
 - \(V_{ge} = \pm 15 \text{V} \)

Recovery Loss vs. Gate Resistance

- **Conditions**
 - \(L_s = 40 \text{nH} \)
 - \(V_{cc} = 900 \text{V} \)
 - \(I_c = 1200 \text{A} \)
 - \(V_{ge} = \pm 15 \text{V} \)
RBSOA

Reverse bias safe operation area (RBSOA)

![Graph showing RBSOA](image)

Reverse Recovery SOA

Conditions:
- $L_s \leq 40\, \text{nH}$
- $V_{cc} \leq 1200\, \text{V}$
- $I_c \leq 2400\, \text{A}$
- $R_{\text{ON}} \geq 2.2\, \Omega$
- $V_{GE} = \pm 15\, \text{V}$
- $T_{vj} = 175\, ^\circ\text{C}$
- On pulse width $\geq 10\, \mu\text{s}$

$P_{\text{max}} \leq 1.2\, \text{MW}$

Definition of Recovery di/dt

$$\frac{\Delta t}{0.5I_{\text{rm}}} = \frac{0.5I_{\text{rm}}}{\Delta t}$$

Pmax $\leq 1.2\, \text{MW}$

![Graph showing Reverse Recovery SOA](image)
MBM1200GS17G2

IGBT Module

Target Specification

Collector to Emitter Voltage, VCE (V)

Capacitance vs. Collector to Emitter Voltage

Typical

Thermistor Resistance vs. Temperature

Conditions:
Tj = 25°C
I = 100kHz
HITACHI POWER SEMICONDUCTORS

Notices

1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.

2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.

3. In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users’ fail-safe precautions or other arrangement. Or consult Hitachi’s sales department staff.

4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user’s units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.

5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi Power Semiconductor Device, Ltd.

7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi Power Semiconductor Device, Ltd.

8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety or are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

For inquiries relating to the products, please contact nearest overseas representatives that is located “Inquiry” portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi-power-semiconductor-device.co.jp/en/