Silicon N-channel IGBT 3300V E2 version

FEATURES

- * Soft switching behavior & low conduction loss:
- Soft low-injection punch-through High conductivity IGBT.
- * Low driving power due to low input capacitance MOS gate.
- * Low noise recovery: Ultra soft fast recovery diode.
- * High thermal fatigue durability:

(delta Tc=70K, N>30,000cycles) AlSiC base-plate/AlN substrate

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

Item			Symbol		Unit		MBN1000E33E2			
Collector Emitter Voltage			VCES		V		3,300			
Gate Emitter Voltage			VGES		V		±20			
Collector Current DC 1ms				A		1,000 (Tc=95°C)				
						2,000				
Forward Current DC 1ms		IF IF		А		1,000				
						2,000				
Junction Temperature			Ti		°C		-40 ~ +150			
Storage Temperature		T _{stg}		°C		-50 ~ +125				
Isolation Voltage			Viso		VRMS		6,000(AC 1 minute)			
	Terminals (M4/M8)		-				2/15 (1)			
Screw Torque	Mounting	(M6)	-		N∙m		6 (2)			
Notes: (1) Recomm	Ŭ		2/15 ⁺⁰ -2N-1	m	(2) Recommen		ded Value 5.5±0.5N⋅m			
ELECTRICAL CH					(2) 1000			5 0.0±0.014-111		
				-	E.	ſ	ſ			
Ite	m		Symbol	Unit	Min.	Тур.	Max.	Test Conditions		
					-	-	8	V _{CE} =3,300V, V _{GE} =0V, Tj=25°C		
Collector Emitter Cu		ent	I _{CES}	mA	-	14	40	V _{CE} =3,300V, V _{GE} =0V, Tj=125°C		
Gate Emitter Leakag	ge Current		I _{GES}	nA	-500	-	+500	V _{GE} =±20V, V _{CE} =0V, Tj=25°C		
Collector Emitter Sc		olto go			2.5	2.95	3.5	Ic=1,000A, V _{GE} =15V, Tj=125°C		
Collector Emitter Sa	ituration v	oitage	V _{CE(sat)}	V	-	3.10	-	I _C =1,000A, V _{GE} =15V, Tj=150°C		
Gate Emitter Thresh	nold Voltag	je	V _{GE(TO)}	V	5.5	6.5	7.5	V _{CE} =10V, I _C =1,000mA, Tj=25°C		
Input Capacitance			Cies	nF	-	130	-	V _{CE} =10V, V _{GE} =0V, f=100kHz, Tj=25°C		
Internal Gate Resist	Internal Gate Resistance		Rge	Ω	-	1.5	-	V _{CE} =10V, V _{GE} =0V, f=100kHz, Tj=25°C		
	Rise Ti				1.6	2.1	2.6	V _{CC} =1,650V, Ic=1,000A		
Switching Times	Turn On Time		t _{on}	μs	1.9	3.0	3.4	L=120nH		
Switching Times	Fall Time		t _f		1.0	1.8	2.7	$R_G=3.9\Omega/3.9\Omega$, CGE=100nF (3)		
	Turn Off Time		t _{off}		2.2	3.9	5.0	V _{GE} =±15V, Tj=125°C		
Peak Forward Volta	ae Dron		V _{FM}	V μs	2.2	2.5	3.0	IF=1,000A, V _{GE} =0V, Tj=125°C		
	ge Diop				-	2.5	-	IF=1,000A, V _{GE} =0V, Tj=150°C		
Reverse Recovery	Time				0.2	0.8	1.2	Vcc=1,650V, IF=1,000A, L=120nH		
								Tj=125°C, R _G =3.9Ω/3.9Ω, CGE=100nF		
	A /: -141-			_	40			V _{cc} =2000V,Ls=130nH		
Short Circuit Pulse Width		t _{sc}	μS	10	-	-	$R_{G}(on/off) = 3.9/39 \Omega$,			
		_		-	2.0	2.4	V _{GE} =±15V,Tj=125°C			
Turn On Loss		Eon(10%) Eon(full)	J/P		2.0	2.4	Tj=125°C			
				-	2.2	-	Tj=150°C			
Turn Off Loss			J/P	-	1.4	1.8	Vcc=1,650V, Ic= IF=1,000A,			
		E _{off(10%)} E _{off(full)}			1.4	-	Tj=125°C L=120nH, R _G =3.9Ω/3.9Ω,			
				-	1.6	-	$\frac{1}{T_{j=150^{\circ}C}} CGE = 100 nF $ (3)			
		Err(10%)			1.0	1.3	VGE=±IOV			
Reverse Recovery Loss		Err(10%)	J/P		1.0	-	Tj=125°C			
				-	1.4	-	Tj=150°C			
Stray inductance module		LSCE	nH		1.4	-				
Stray inductance module		LOUE	1111	-	10	-				

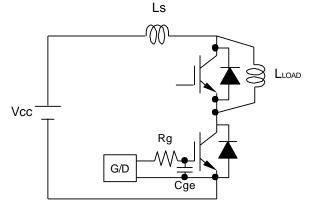
Notes:(3) R_G and C_{GE} value are the test condition's value for evaluation of the switching times, not recommended value.

Please, determine the suitable R_{G} value after the measurement of switching waveforms (overshoot voltage, etc.) with appliance mounted.

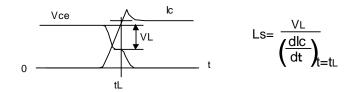
* Please contact our representatives at order.

* For actual application, please confirm this spec sheet is the newest revision.

^{*} For improvement, specifications are subject to change without notice.


IGBT MODULE

MBN1000E33E2


THERMAL CHARACTERISTICS

Item		Symbol	Unit	Min.	Тур.	Max.	Conditions	
Thermal Impedance	IGBT FWD	Rth(j-c) Rth(j-c)	K/W	-	-	0.012	Junction to case	
Contact Thermal Impedance		Rth(c-f)	K/W	-	0.007	-	Case to fin (λgrease=1W/(m⋅K), heat-sink flatness ≤ 50um)	

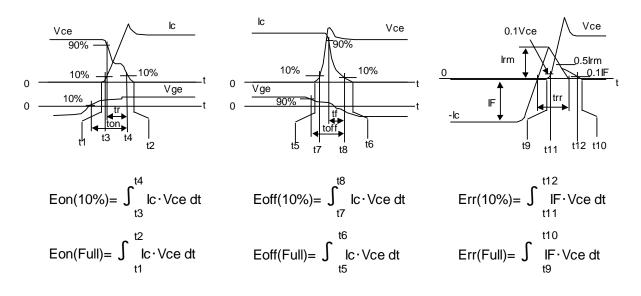
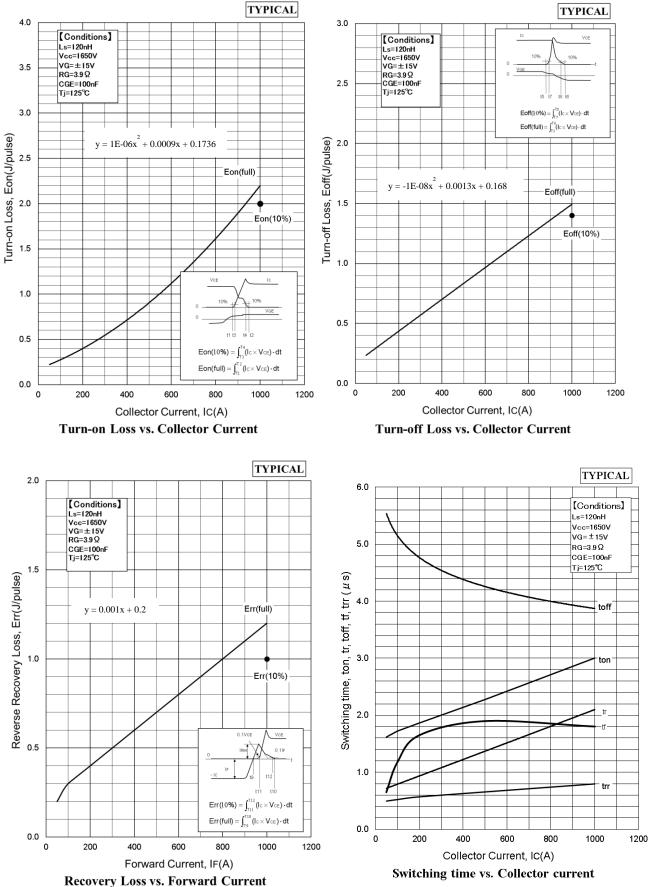
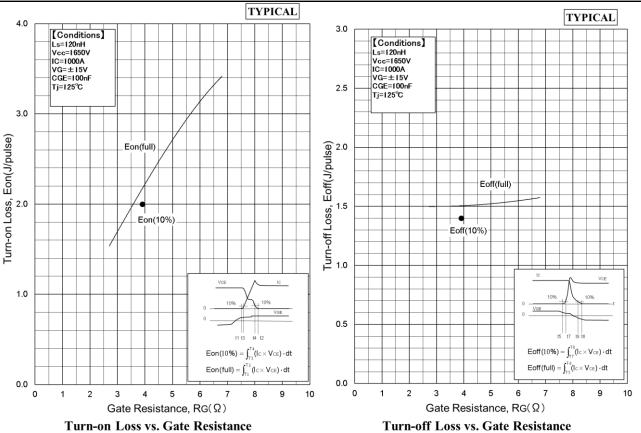

DEFINITION OF TEST CIRCUIT

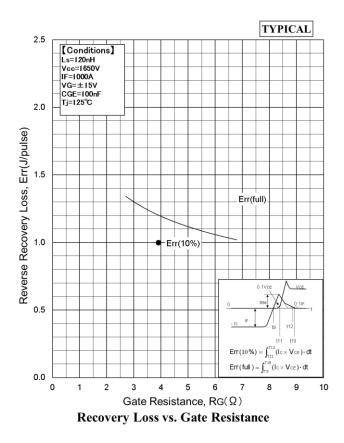
Fig.1 Switching test circuit

Fig.3 Definition of switching loss

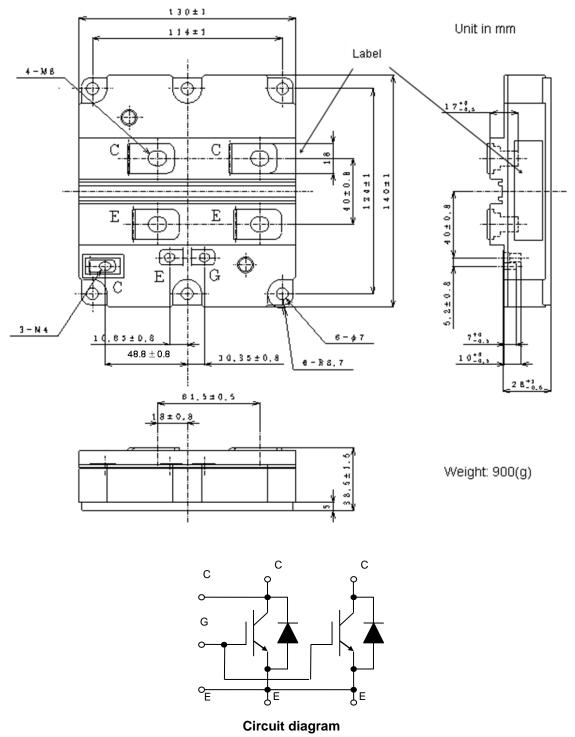


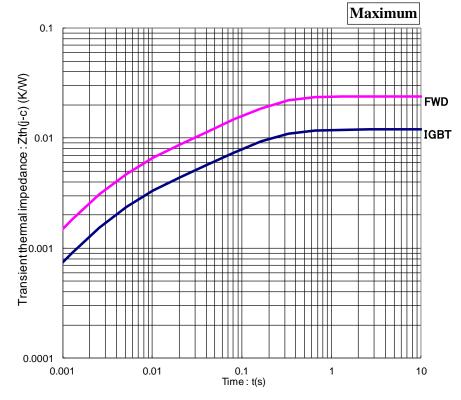
IGBT MODULE 1000E33E2


STATIC CHARACTERISTICS TYPICAL TYPICAL 2000 2000 Tc=25°C VGE=15V 13V 13V Tc=125°C VGE=15V -11V 1500 1500 11V Collector Current, IC(A) Collector Current, IC(A) 1000 1000 9V 500 500 9V 7V 7V 0 0 6 0 0 2 2 4 6 4 Collector-Emitter Voltage, VCE(V) Collector-Emitter Voltage, VCE(V) **Collecter Current vs. Collector to Emitter Voltage Collecter Current vs. Collector to Emitter Voltage** TYPICAL TYPICAL 2000 VGE=15V 2000 Tc=150°C 13V VGE=0V Tc=25°C 1500 1500 11V Collector Current, IC(A) Forward Current, IF(A) 0001 1000 9V 500 500 Tc=150°C 7V 0 0 0 2 6 4 0 1 2 3 4 5 Collector-Emitter Voltage, VCE(V) Forward Voltage, VF(V) **Collecter Current vs. Collector to Emitter Voltage** Forward Voltage of free-wheeling diode



DYNAMIC CHARACTERISTICS





OUTLINE DRAWINGS

TRANSIENT THERMAL IMPEDANCE

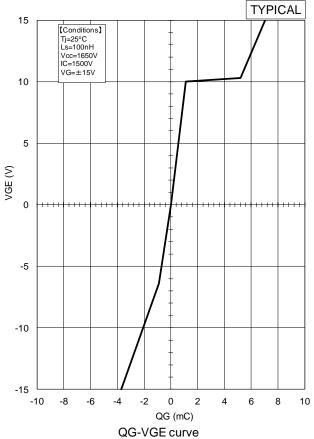
Transient Thermal Impedance Curve

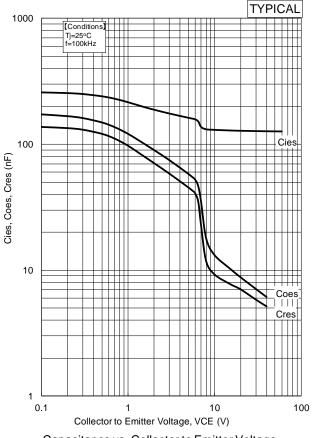
Curve approximation model Zth = Σ rth[n]*(1-exp(-t/τth[n]))

n	1	2	3	4	Unit
τth[n]	1.60E-01	2.74E-02	4.04E-03	7.37E-04	sec
rth[n,IGBT]	7.46E-03	2.17E-03	2.16E-03	2.21E-04	κω
rth[n,Diode]	1.48E-02	4.47E-03	4.24E-03	4.53E-04	KAW

Material declaration

Please note the following materials are contained in the product, in order to keep characteristic and reliability level.

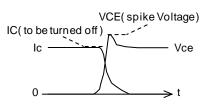

Material	Contained part
Lead (Pb) and its compounds	Solder

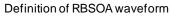

IGBT MODULE

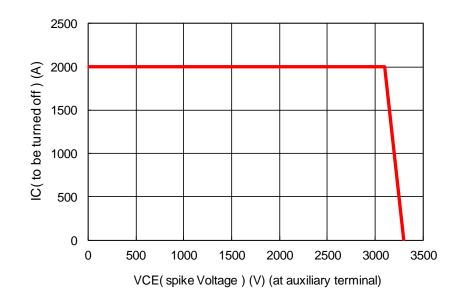
MBN1000E33E2

QG-VG Curve

Cies, Coes, Cres Curve




Capacitance vs. Collector to Emitter Voltage



RBSOA

Conditions: Vcc≤2200V, lc≤2000A, Rg≥3.9Ω, Cge≥100nF, VGE=±15V, -40°C≤Tj≤150°C, Ls≤120nH, on pulse width≥ 10us (Vce spike voltage and Ls are defined at auxiliary terminal)

Reverse bias safe operation area (RBSOA)

HITACHI POWER SEMICONDUCTORS

Notices

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.
- 2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
- 3. In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets.
- 5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
- For inquiries relating to the products, please contact nearest overseas representatives that is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi.co.jp/products/power/pse/

